|
开发板 :RK3588 EVB开发板
eMMC :256GB
LPDDR4 :16GB
显示屏 :10.1英寸HDMI接口显示屏
u-boot :2017.09
linux :6.1
在前面的文章我们对Rockhip Linux SDK进行了深入分析,其中涉及到了SDK编译过程、编译源码,具体可以参考: Rockchip RK3588 - Rockchip Linux SDK编译;(如需要此文档的可以联系博主获取) Rockchip RK3588 - Rockchip Linux SDK Buildroot文件系统构建;(如需要此文档的可以联系博主获取) Rockchip RK3588 - Rockchip Linux SDK脚本分析。(如需要此文档的可以联系博主获取) 此外,我们还是深入分析了Recovery模式下的系统升级功能,具体可参考: Rockchip RK3588 - Rockchip Linux Recovery updateEngine源码分析;(如需要此文档的可以联系博主获取) Rockchip RK3588 - Rockchip Linux Recovery updateEngine测试。 (如需要此文档的可以联系博主获取) 接下来我们将尝试在RK3588开发板实现系统升级功能,当然我们还期望当根文件系统损坏时,开发板能够通过按住GPIO口进入到recovery系统恢复正常系统。 一、uboot启动方式 既然要实现在开发板实现系统升级功能,我们就需要了解uboot启动内核的方式,并制作以下分区镜像; misc.img:misc分区是一个没有文件系统的分区,用于存放一些引导配置参数; recovery.img:由kernel + dtb + ramdisk组成,主要用于升级操作; uboot会根据misc分区存放的字段来判断将要引导的系统是normal系统还是recovery系统。 1.1 系统固件 我们使用的是RK3588开发板,这里我们就去下载官方提供的固件 这里我们选择debian-bullseye-desktop-arm64-images.tgz作为测试使用的镜像文件,将debian-bullseye-desktop-arm64-images.tgz(位于"?3_分区镜像文件"目录下,以实际下载的文件为准)拷贝到/work/sambashare/rk3588/friendly/sd-fuse_rk3588目录下; root@ubuntu:/work/sambashare/rk3588/friendly/sd-fuse_rk3588# ll debian* -rwxrw-rw- 1 root root 1590466719 Dec 3 01:49 debian-bullseye-desktop-arm64-images.tgz* -rwxrw-rw- 1 root root 75 Nov 18 19:05 debian-bullseye-desktop-arm64-images.tgz.hash.md5* root@ubuntu:/work/sambashare/rk3588/friendly/sd-fuse_rk3588# tar -xvzf debian-bullseye-desktop-arm64-images.tgz 解压得到debian-bullseye-desktop-arm64文件夹; root@ubuntu:/work/sambashare/rk3588/friendly/sd-fuse_rk3588# ll debian-bullseye-desktop-arm64 -rw-r--r-- 1 root root 8072140 May 28 2023 boot.img -rw-r--r-- 1 root root 1424 May 28 2023 dtbo.img -rw-r--r-- 1 root root 307200 Sep 8 23:33 idbloader.img -rw-r--r-- 1 root root 64 Nov 17 10:03 info.conf -rw-r--r-- 1 root root 35551252 Nov 16 16:17 kernel.img -rw-r--r-- 1 root root 471488 Sep 8 23:33 MiniLoaderAll.bin -rw-r--r-- 1 root root 49152 May 28 2023 misc.img -rw-r--r-- 1 root root 470 Nov 17 10:03 parameter.txt -rw-r--r-- 1 root root 6227456 Nov 16 16:17 resource.img -rw-r--r-- 1 root root 3992675220 Nov 17 10:03 rootfs.img -rw-r--r-- 1 root root 4194304 Sep 8 23:33 uboot.img -rw-r--r-- 1 root root 159868 Nov 17 10:03 userdata.img 可以看到解压的文件已经包含了misc.img,但是并没有recovery.img。 1.1.1 系统分区介绍 parameter.txt保存着分区信息: FIRMWARE_VER: 12.0 MACHINE_MODEL: RK3588 MACHINE_ID: 007 MANUFACTURER: RK3588 MAGIC: 0x5041524B ATAG: 0x00200800 MACHINE: NanoPi6 CHECK_MASK: 0x80 PWR_HLD: 0,0,A,0,1 TYPE: GPT CMDLINE: mtdparts=rk29xxnand:0x00002000@0x00004000(uboot),0x00002000@0x00006000(misc),0x00002000@0x00008000(dtbo),0x00008000@0x0000a000(resource),0x00014000@0x00012000(kernel),0x00010000@0x00026000(boot),0x00010000@0x00036000(recovery),0x007c0000@0x00046000(rootfs),-@0x00806000(userdata:grow) 解析信息如下: 其中: uboot分区:供uboot编译出来的uboot.img; misc分区:引导参数分区,供misc.img,给recovery使用; dtbo::供kernel编译出来的dtbo.img; resource:资源分区,由设备树、图片资源文件组成,不包含内核; boot:供kernel编译出来的boot.img(可能是FIT uImage镜像格式,也有可能是Android bootimg镜像格式); kernel:供kernel编译出来的kernel.img(由tools/mkkrnlimg工具编译内核镜像Image文件得到); recovery分区:供recovery编译出的recovery.img(kernel + dtb + ramdisk); rootfs分区:供buildroot、debian或yocto编出来的rootfs.img; userdata分区:供APP临时生成文件或给最终用户使用,挂载在/userdata目录下。 从上面我们可以看到这里有两个分区时存放了内核镜像,分别是boot和kernel,那问题来了,uboot启动到底使用的是哪个内核呢? 1.1.2 生成统一固件 将debian-bullseye-desktop-arm64目录下的镜像文件重新打包成SD卡固件: root@@ubuntu:/work/sambashare/rk3588/friendly/sd-fuse_rk3588# sudo ./mk-sd-image.sh debian-bullseye-desktop-arm64/ Crea ting RAW image: out/rk3588-sd-debian-bullseye-desktop-6.1-arm64-20240714.img (7800 MB) --------------------------------- 记录了0+0 的读入 记录了0+0 的写出 0字节已复制,0.0001181 s,0.0 kB/s ---------------------------------------------------------------- [out/rk3588-sd-debian-bullseye-desktop-6.1-arm64-20240714.img] capacity = 7438MB, 7799999488 bytes current out/rk3588-sd-debian-bullseye-desktop-6.1-arm64-20240714.img partition: ---------------------------------------------------------------- parsing ./debian-bullseye-desktop-arm64//parameter.txt: create new GPT 9: ---------------------------------------------------------------- copy from: ./debian-bullseye-desktop-arm64 to out/rk3588-sd-debian-bullseye-desktop-6.1-arm64-20240714.img [RAW. 0]: 300 KB | ./debian-bullseye-desktop-arm64/idbloader.img > 100% : done. [RAW. 1]: 4096 KB | ./debian-bullseye-desktop-arm64/uboot.img > 100% : done. [RAW. 2]: 48 KB | ./debian-bullseye-desktop-arm64/misc.img > 100% : done. [RAW. 3]: 1 KB | ./debian-bullseye-desktop-arm64/dtbo.img > 100% : done. [RAW. 4]: 2518 KB | ./debian-bullseye-desktop-arm64/resource.img > 100% : done. [RAW. 5]: 34590 KB | ./debian-bullseye-desktop-arm64/kernel.img > 100% : done. [RAW. 6]: 7882 KB | ./debian-bullseye-desktop-arm64/boot.img > 100% : done. [RAW. 8]: 3907280 KB | ./debian-bullseye-desktop-arm64/rootfs.img > 100% : done. [RAW. 9]: 156 KB | ./debian-bullseye-desktop-arm64/userdata.img > 100% : done. ---------------------------------------------------------------- --------------------------------- RAW image successfully created (21:09:10). -rw-r--r-- 1 root root 7799999488 7月 14 21:09 该sh脚本内部调用了Rockchip官方提供的打包工具sd_update生成的统一固件,由于打包工具并不开源,所以无法研究源码。 不过我们大致可以猜测出应该就是做了一个镜像文件,然后按照parameter.txt进行划分分区,并将各个分区镜像依次烧录进去。 View Code 1.1.3 制作 SD 启动卡 我们将SD卡插入PC上,在虚拟机ubuntu中运行demsg查看新接入的设备; [36809.524292] usb 2-1: USB disconnect, device number 2 [36813.382382] usb 2-1: new high-speed USB device number 3 using ehci-pci [36813.657882] usb 2-1: New USB device found, idVendor=14cd, idProduct=1212, bcdDevice= 1.00 [36813.657887] usb 2-1: New USB device strings: Mfr=1, Product=3, SerialNumber=2 [36813.657889] usb 2-1: Product: Mass Storage Device [36813.657890] usb 2-1: Manufacturer: Generic [36813.657891] usb 2-1: SerialNumber: 121220160204 [36813.660529] usb-storage 2-1:1.0: USB Mass Storage device detected [36813.661135] scsi host33: usb-storage 2-1:1.0 [36814.676011] scsi 33:0:0:0: Direct-Access Mass Storage Device 1.00 PQ: 0 ANSI: 0 CCS [36814.677119] sd 33:0:0:0: Attached scsi generic sg2 type 0 [36814.681851] sd 33:0:0:0: [sdb] 62333952 512-byte logical blocks: (31.9 GB/29.7 GiB) [36814.685829] sd 33:0:0:0: [sdb] Write Protect is off [36814.685833] sd 33:0:0:0: [sdb] Mode Sense: 03 00 00 00 [36814.690127] sd 33:0:0:0: [sdb] No Caching mode page found [36814.690132] sd 33:0:0:0: [sdb] Assuming drive cache: write through [36814.713610] sdb: sdb1 [36814.714055] sd 33:0:0:0: [sdb] Attached SCSI removable disk 可以看到SD卡对应的设备节点为/dev/sdb,对应1个分区sdb1; root@@ubuntu:/work/sambashare/rk3588/friendly/sd-fuse_rk3588# sudo ls /dev/sdb* /dev/sdb /dev/sdb1 root@ubuntu:/work/sambashare/rk3588/friendly/sd-fuse_rk3588# df -hT 文件系统 类型 容量 已用 可用 已用% 挂载点 udev devtmpfs 3.9G 0 3.9G 0% /dev tmpfs tmpfs 791M 3.6M 787M 1% /run /dev/sda5 ext4 98G 69G 24G 75% / tmpfs tmpfs 3.9G 0 3.9G 0% /dev/shm tmpfs tmpfs 5.0M 4.0K 5.0M 1% /run/lock tmpfs tmpfs 3.9G 0 3.9G 0% /sys/fs/cgroup /dev/sda1 vfat 511M 4.0K 511M 1% /boot/efi /dev/loop15 squashfs 497M 497M 0 100% /snap/gnome-42-2204/132 tmpfs tmpfs 791M 0 791M 0% /run/user/0 tmpfs tmpfs 791M 36K 791M 1% /run/user/1000 /dev/sdc2 ext4 11G 311M 9.8G 4% /media/zhengyang/userdata /dev/sdc1 ext4 4.5G 4.4G 35M 100% /media/zhengyang/rootfs 开始制作SD启动卡: root@ubuntu:/work/sambashare/rk3588/friendly/sd-fuse_rk3588# sudo dd if=out/rk3588-sd-debian-bullseye-desktop-6.1-arm64-20240714.img of=/dev/sdb bs=4M status=progress 1.2 uboot环境变量 将SD卡插入到开发板,并使用准备好的USB转串口适配器和连接线(需另购),连接开发板,给开发板上电。在启动过程中按下CTRL+C进入uboot命令行模式; View Code 1.2.1 启动命令行 查看内核启动命令; => print bootcmd bootcmd=boot_fit;boot_android ${devtype} ${devnum};bootrkp;run distro_bootcmd; 1.2.2 启动参数 查看内核启动参数: => pri bootargs bootargs=storagemedia=sd androidboot.storagemedia=sd androidboot.mode=normal androidboot.dtbo_idx=1 1.2.3 资源文件 uboot查看资源文件: # 切换到SD卡所属设备 ==> mmc dev 1 switch to partitions #0, OK mmc1 is current device ==> mmc info Device: mmc@fe2c0000 Manufacturer ID: 3 OEM: 5344 Name: SD32G Timing Interface: Legacy Tran Speed: 52000000 Rd Block Len: 512 SD version 3.0 High Capacity: Yes Capacity: 29.7 GiB Bus Width: 4-bit Erase Group Size: 512 Bytes # 从resource分区读取20个扇区数据 ==> mmc read 0x10000000 0xa000 20 MMC read: dev # 1, block # 40960, count 32 ... 32 blocks read: OK # 查看前两个扇区数据 ==> md.b 0x10000000 0x400 10000000: 52 53 43 45 00 00 00 00 01 01 01 00 18 00 00 00 RSCE............ 10000010: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ ...... 10000200: 45 4e 54 52 72 6b 33 33 39 39 2d 6e 61 6e 6f 70 ENTRrk3399-nanop 10000210: 69 34 2d 72 65 76 30 30 2e 64 74 62 00 00 00 00 i4-rev00.dtb.... 10000220: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ................ ...... 100002e0: 02 8a cd 4f a8 69 32 dd d0 bd de 09 34 59 ad 6e ...O.i2.....4Y.n 100002f0: 7d 42 d6 ac 00 00 00 00 00 00 00 00 00 00 00 00 }B.............. ...... 这里我们读取resource分区的数据,也就是resource.img镜像,可以看到以上输出内容中包含了设备树文件的数据。 1.2.4 设备树 查看设备树: => print dtb_name dtb_name=rk3588-nano0pi6-rev01.dtb 1.3 启动内核 当我们在uboot命令行执行了boot命令时,uboot会获取bootcmd环境变量的内容,然后执行bootcmd中保存的启动命令。 接下来我们来分析一下bootcmd默认配置,在默认环境变量default_environment(位于uboot-rockchip/include/env_default.h)中定义有,其内容大致如下: const uchar default_environment[] = { "bootcmd=" CONFIG_BOOTCOMMAND "?" "bootdelay=" __stringify(CONFIG_BOOTDELAY) "?" "baudrate=" __stringify(CONFIG_BAUDRATE) "?" "ipaddr=" __stringify(CONFIG_IPADDR) "?" "serverip=" __stringify(CONFIG_SERVERIP) "?" "netmask=" __stringify(CONFIG_NETMASK) "?" ...... #ifdef CONFIG_EXTRA_ENV_SETTINGS CONFIG_EXTRA_ENV_SETTINGS #endif "?" }; 默认启动命令CONFIG_BOOTCOMMAND定义在uboot-rockchip/include/configs/nanopi6.h,该文件存放着开发板配置信息,被uboot-rockchip/include/config.h文件引入。 #include < configs/rk3588_common.h > /* Remove or override few declarations from rk3588-common.h */ #undef CONFIG_BOOTCOMMAND #undef CONFIG_DISPLAY_BOARDINFO_LATE #undef RKIMG_DET_BOOTDEV #undef RKIMG_BOOTCOMMAND #define CONFIG_SYS_MMC_ENV_DEV 0 #define CONFIG_SYS_MMC_MAX_BLK_COUNT 32768 #define CONFIG_MISC_INIT_R #define CONFIG_SERIAL_TAG #ifndef CONFIG_SPL_BUILD #define ROCKCHIP_DEVICE_SETTINGS "stdout=serial,vidconsole?" "stderr=serial,vidconsole?" #define RKIMG_DET_BOOTDEV "rkimg_bootdev=" "if mmc dev 1 && rkimgtest mmc 1; then " "setenv devtype mmc; setenv devnum 1; echo Boot from SDcard;" "elif mmc dev 0; then " "setenv devtype mmc; setenv devnum 0;" "elif rksfc dev 1; then " "setenv devtype spinor; setenv devnum 1;" "fi; ?" #define RKIMG_BOOTCOMMAND "boot_fit;" "boot_android ${devtype} ${devnum};" "bootrkp;" "run distro_bootcmd;" #define CONFIG_BOOTCOMMAND RKIMG_BOOTCOMMAND #endif 这里引入了uboot-rockchip/include/configs/rk3588_common.h,而该文件又引入了uboot-rockchip/include/configs/rockchip-common.h。 这里支持了内核的4种引导方式: boot_fit:从eMMC中boot/recovery分区(如果进入的是normal系统,则为boot分区;如果进入的是recovery系统,则为recovery分区)加载FIT uImage镜像文件(通常由kernel + dtb + ramdisk组成)到内存,然后启动内核 ; boot_android:启动Android内核镜像; bootrkp:通常用于Rockchip平台上的特定启动操作,可能用于启动特定的固件或者特殊的操作模式; distro_bootcmd:运行uboot环境中定义的 distro_bootcmd,这是一个uboot环境变量,通常包含了一系列的启动命令,比如尝试从网络引导、从存储设备引导等; 其中boot_fit、distro_bootcmd启动方式我们在《 Rockchip RK3399 - 移植linux 5.2.8》中有过介绍。 1.3.1 内核启动日志 输入boot命令启动内核: => boot ## Booting FIT Image FIT: No fit blob # 命令boot_fit FIT: No FIT image ANDROID: reboot reason: "(none)" # 命令boot_android Not AVB images, AVB skip No valid android hdr Android image load failed Android boot failed, error -1. ## Booting Rockchip Format Image # 命令bootrkp fdt @ 0x08300000 (0x000421b2) # fdt加载到内存的地址 kernel @ 0x00400000 (0x021c7808) # kernel加载到内存的地址 ramdisk @ 0x0a200000 (0x007b2bc0) # ramdisk加载到内存的地址 Fdt Ramdisk skip relocation ## Flattened Device Tree blob at 0x08300000 Booting using the fdt blob at 0x08300000 Using Device Tree in place at 0000000008300000, end 00000000083451b1 ## reserved-memory: cma: addr=10000000 size=8000000 drm-logo@00000000: addr=edf00000 size=468000 vendor-storage-rm@00000000: addr=ebcd3000 size=10000 ramoops@110000: addr=110000 size=e0000 Adding bank: 0x00200000 - 0x08400000 (size: 0x08200000) Adding bank: 0x09400000 - 0xf0000000 (size: 0xe6c00000) Adding bank: 0x100000000 - 0x3fc000000 (size: 0x2fc000000) Adding bank: 0x3fc500000 - 0x3fff00000 (size: 0x03a00000) Adding bank: 0x4f0000000 - 0x500000000 (size: 0x10000000) Total: 10246.299/11135.828 ms Starting kernel ... [ 11.146608] Booting Linux on physical CPU 0x0000000000 [0x412fd050] [ 11.146631] Linux version 6.1.25 (root@ubuntu) (aarch64-linux-gnu-gcc (Ubuntu 10.5.0-1ubuntu1~20.04) 10.5.0, GNU ld (GNU Binutils for Ubuntu) 2.34) #1 SMP Wed Dec 27 21:53:18 CST 2023 [ 11.153743] Machine model: FriendlyElec NanoPC-T6 ...... [ 11.510154] Kernel command line: storagemedia=sd androidboot.storagemedia=sd androidboot.mode=normal androidboot.dtbo_idx=1 androidboot.verifiedbootstate=orange earlycon=uart8250,mmio32,0xfeb50000 console=ttyFIQ0 coherent_pool=1m irqchip.gicv3_pseudo_nmi=0 rw root=/dev/mmcblk0p8 rootfstype=ext4 data=/dev/mmcblk0p9 consoleblank=0 cgroup_enable=cpuset cgroup_memory=1 cgroup_enable=memory swapaccount=1 ...... Debian GNU/Linux 11 NanoPC-T6 ttyFIQ0 NanoPC-T6 login: [ 20.885195] systemd-journald[409]: File /var/log/journal/b9164042f80842f6968af54e1d15c9af/user-1000.journal corrupted or uncleanly shut down, renaming and replacing. [ 21.783657] rk_hdmirx fdee0000.hdmirx-controller: hdmirx_audio_startup: device is no connected or audio is off [ 26.433687] platform mtd_vendor_storage: deferred probe pending NanoPC-T6 login: (1) 首先执行boot_fit命令,对于FIT uImage,其中地址范围0x00000000~0x00000027表示的是fdt_header结构体的成员信息。 因此会调用fit_get_blob函数获取boot/recovery分区(如果进入的是normal系统,则获取boot分区;如果进入的是recovery系统,则获取recovery分区)第一个扇区数据,并对fdt_header结构体进行校验判断是不是FIT uImage。 由于正常情况下我们进入的是normal系统,则从boot分区加载boot.img数据,从输出的日志信息可以看出我们烧录的boot.img并不是FIT uIamge。 (2) 接着执行boot_android命令,从输出日志可以看到应该也是引导失败了。 (3) 执行bootrkp命令。 (4) 执行distro_bootcmd命令。 有关bootrkp和distro_bootcmd启动方式,我们接下来详细介绍。 1.3.2 加载命令行 不知道你有没有留意内核启动输出命令行信息; [ 11.510154] Kernel command line: storagemedia=sd androidboot.storagemedia=sd androidboot.mode=normal androidboot.dtbo_idx=1 androidboot.verifiedbootstate=orange earlycon=uart8250,mmio32,0xfeb50000 console=ttyFIQ0 coherent_pool=1m irqchip.gicv3_pseudo_nmi=0 rw root=/dev/mmcblk0p8 rootfstype=ext4 data=/dev/mmcblk0p9 consoleblank=0 cgroup_enable=cpuset cgroup_memory=1 cgroup_enable=memory swapaccount=1 这里输出的信息为啥和bootargs环境变量以及arch/arm64/boot/dts/rockchip/rk3588-nanopi6-common.dtsi内容不一样呢? => pri bootargs bootargs=storagemedia=sd androidboot.storagemedia=sd androidboot.mode=normal androidboot.dtbo_idx=1 # 设备树设备节点内容 chosen: chosen { bootargs = "earlycon=uart8250,mmio32,0xfeb50000 console=ttyFIQ0 coherent_pool=1m irqchip.gicv3_pseudo_nmi=0"; }; 那么我们不得不介绍内核启动后是如何获取到启动参数。对于ARM64来说,uboot在启动内核时会将r2设置为dtb文件的开始地址。 1.3.2.1 内核 bootargs 来源 对于开发板开发板而言,r2设置为了rk3588-nanopi6-rev01.dtb加载到内存的地址。 这里我们直接从内核start_kernel函数开始说起,其位于init/main.c文件,函数调用栈如下; #char __initdata boot_command_line[COMMAND_LINE_SIZE]; // 全局变量,定义在init/main.c start_kernel() // init/main.c char *command_line; ....... setup_arch(&command_line); // arch/arm64/kernel/setup.c ...... *cmdline_p = boot_command_line; ...... // __fdt_pointer:dtb所在的物理地址,由bootloader通过x0寄存器传递过来 setup_machine_fdt(__fdt_pointer); // arch/arm64/kernel/setup.c // 返回dtb所在的虚拟地址dt_virt void *dt_virt = fixmap_remap_fdt(dt_phys, &size, PAGE_KERNEL) if (!dt_virt || !early_init_dt_s can(dt_virt)) { ........ } name = of_flat_dt_get_machine_name(); pr_info("Machine model: %sn", name); machine_desc = mdesc; ...... 这里我们重点关注early_init_dt_scan函数,early_init_dt_scan主要是对dtb进行早期的扫描工作,下面是简要介绍函数的调用流程和实现细节: early_init_dt_scan(dt_virt) // drivers/of/fdt.c // 对dtb头进行检查 early_init_dt_verify(dt_virt) early_init_dt_scan_nodes() // 遍历设备树的节点,解析出重要的信息用于内核启动 /* Retrieve various information from the /chosen node */ of_scan_flat_dt(early_init_dt_scan_chosen, boot_command_line); /* Initialize {size,address}-cells info */ of_scan_flat_dt(early_init_dt_scan_root, NULL); /* Setup memory, calling early_init_dt_add_memory_arch */ of_scan_flat_dt(early_init_dt_scan_memory, NULL); of_scan_flat_dt对dtb里面的所有节点进行扫描,用提供的回调函数循环处理节点信息,回调函数返回0继续扫描,返回非0结束扫描,当扫描到最后一个节点也会结束扫描; /** * of_scan_flat_dt - scan flattened tree blob and call callback on each. * @it: callback function * @data: context data pointer * * This function is used to scan the flattened device-tree, it is * used to extract the memory information at boot before we can * unflatten the tree */ int __init of_scan_flat_dt(int (*it)(unsigned long node, const char *uname, int depth, void *data), void *data) { //dtb数据的地址,也就是根节点的地址 const void *blob = initial_boot_params; const char *pathp; int offset, rc = 0, depth = -1; if (!blob) return 0; // 从根节点遍历dtb中每个节点,返回的offset就是每个节点的地址 // offset:表示节点的地址相对于根节点的偏移量,也是节点数据所在地址 // depth:代表节点相对于根节点的深度,比如根节点深度是0,/chosen节点是1 for (offset = fdt_next_node(blob, -1, &depth); offset >= 0 && depth >= 0 && !rc; offset = fdt_next_node(blob, offset, &depth)) { // 解析出节点名称 pathp = fdt_get_name(blob, offset, NULL); if (*pathp == '/') pathp = kbasename(pathp); // 回调函数解析节点,it是传递进来的设备树节点的解析函数,需要解析什么消息就传递进来相应的节点解析函数 rc = it(offset, pathp, depth, data); } return rc; } early_init_dt_scan_chosen用于扫描chosen节点,并把bootargs属性值拷贝到boot_command_line中,如果内核定义了CONFIG_CMDLINE这个宏,则把配置的命令行参数也拷贝到boot_command_line; /* * Convert configs to something easy to use in C code */ #if defined(CONFIG_CMDLINE_FORCE) static const int overwrite_incoming_cmdline = 1; static const int read_dt_cmdline; static const int concat_cmdline; #elif defined(CONFIG_CMDLINE_EXTEND) static const int overwrite_incoming_cmdline; static const int read_dt_cmdline = 1; static const int concat_cmdline = 1; #else /* CMDLINE_FROM_BOOTLOADER */ // 走这里 static const int overwrite_incoming_cmdline; static const int read_dt_cmdline = 1; static const int concat_cmdline; #endif #ifdef CONFIG_CMDLINE static const char *config_cmdline = CONFIG_CMDLINE; #else static const char *config_cmdline = ""; #endif int __init early_init_dt_scan_chosen(unsigned long node, const char *uname, int depth, void *data) { int l = 0; const char *p = NULL; char *cmdline = data; // 即boot_command_line const void *rng_seed; pr_debug("search "chosen", depth: %d, uname: %sn", depth, uname); // 节点的深度要为1,数据不能使NULL,同时节点名字是"chosen"或者"chosen@0" if (depth != 1 || !cmdline || (strcmp(uname, "chosen") != 0 && strcmp(uname, "chosen@0") != 0)) return 0; // 解析initrd相关 early_init_dt_check_for_initrd(node); /* Put CONFIG_CMDLINE in if forced or if data had nothing in it to start */ if (overwrite_incoming_cmdline || !cmdline[0]) // 进入 strlcpy(cmdline, config_cmdline, COMMAND_LINE_SIZE); /* Retrieve command line unless forcing */ if (read_dt_cmdline) // 从chosen节点中解析出bootargs属性 p = of_get_flat_dt_prop(node, "bootargs", &l); if (p != NULL && l > 0) { if (concat_cmdline) { int cmdline_len; int copy_len; strlcat(cmdline, " ", COMMAND_LINE_SIZE); cmdline_len = strlen(cmdline); copy_len = COMMAND_LINE_SIZE - cmdline_len - 1; copy_len = min((int)l, copy_len); strncpy(cmdline + cmdline_len, p, copy_len); cmdline[cmdline_len + copy_len] = '?'; } else { // 追加bootargs参数到boot_command_line strlcpy(cmdline, p, min((int)l, COMMAND_LINE_SIZE)); } } pr_debug("Command line is: %sn", (char*)data); rng_seed = of_get_flat_dt_prop(node, "rng-seed", &l); if (rng_seed && l > 0) { add_bootloader_randomness(rng_seed, l); /* try to clear seed so it won't be found. */ fdt_nop_property(initial_boot_params, node, "rng-seed"); /* update CRC check value */ of_fdt_crc32 = crc32_be(~0, initial_boot_params, fdt_totalsize(initial_boot_params)); } /* break now */ return 1; } 如果想查看内核debug级别日志可以配置: # arch/arm64/configs/nanopi6_linux_defconfig Kernel hacking ---> printk and dmesg options ---> (8) Default console loglevel (1-15) # CONFIG_CONSOLE_LOGLEVEL_DEFAULT # 修改drivers/of/fdt.c 即在需要输出debug级别日志的文件头部定义如下宏 #define DEBUG 通过追加日志,我们重新编译并烧录会发现启动命令行的确是如下这个内容: [ 0.000000] OF: fdt: search "chosen", depth: 1, uname: chosen [ 0.000000] OF: fdt: Looking for initrd properties... [ 0.000000] OF: fdt: initrd_start=0xa200000 initrd_end=0xa9b2bc0 [ 0.000000] OF: fdt: Command line is: storagemedia=sd androidboot.storagemedia=sd androidboot.mode=normal androidboot.dtbo_idx=1 androidboot.verifiedbootstate=orange earlycon=uart8250,mmio32,0xfeb50000 console=ttyFIQ0 coherent_pool=1m irqchip.gicv3_pseudo_nmi=0 rw root=/dev/mmcblk0p8 rootfstype=ext4 data=/dev/mmcblk0p9 consoleblank=0 cgroup_enable=cpuset cgroup_memory=1 cgroup_enable=memory swapaccount=1 1.3.2.2 dtb 中 bootargs 来源 实际上dtb中的bootargs的来源有如下几种; 内核启动参数bootargs保存在dts的chosen节点的bootargs属性,这里就是arch/arm64/boot/dts/rockchip/rk3588-nanopi6-common.dtsi这个设备树源文件; bootargs数据可以是在dts源文件中定义,也可以是uboot启动内核时传递给内核; 其中uboot传递的bootargs参数优先级高于设备树中定义的bootargs,如果是uboot传递的bootargs,在内核启动阶段就会调用fdt_chosen函数将环境变量中的bootargs参数写进dtb数据中; 既然uboot传递了bootargs参数,那么内核将会使用uboot传递过来的bootargs参数,不过该参数为何和内核启动输出的不太一样呢?为此我们不得不去研究bootrkp启动是否追加了启动参数; boot_rockchip_image(dev_desc, &part) // bootrkp启动方式 ...... // 设置内核加载地址(Image镜像) images.ep = kernel_addr_r; images.initrd_start = ramdisk_addr_r; images.initrd_end = ramdisk_addr_r + ramdisk_size; // 设置设备树加载地址 images.ft_addr = (void *)fdt_addr_r; // 设备树长度 images.ft_len = fdt_totalsize(fdt_addr_r); do_bootm_linux(0, 0, NULL, &images); // arch/arm/lib/bootm.c boot_prep_linux(images); // arch/arm/lib/bootm.c image_setup_linux(images) // common/image.c ulong of_size = images->ft_len; char **of_flat_tree = &images->ft_addr; struct lmb *lmb = &images->lmb; boot_fdt_add_mem_rsv_regions(lmb, *of_flat_tree); boot_get_cmdline(lmb, &images->cmdline_start, &images->cmdline_end); boot_relocate_fdt(lmb, of_flat_tree, &of_size); image_setup_libfdt(images, *of_flat_tree, of_size, lmb); // common/image-fdt.c ...... ...... # 可以通过如下代码输出启动参数 char *commandline = env_get("bootargs"); printf("%s %d:%sn", __func__, __LINE__, commandline); 重点关注image_setup_libfdt,定义在common/image-fdt.c; int image_setup_libfdt(bootm_headers_t *images, void *blob, int of_size, struct lmb *lmb) { ulong *initrd_start = &images->initrd_start; ulong *initrd_end = &images->initrd_end; int ret = -EPERM; int fdt_ret; // 进行架构特定的设备树修正 if (arch_fixup_fdt(blob) < 0) { printf("ERROR: arch-specific fdt fixup failedn"); goto err; } #if defined(CONFIG_PASS_DEVICE_SERIAL_BY_FDT) // 定义 // 配置根节点 if (fdt_root(blob) < 0) { printf("ERROR: root node setup failedn"); goto err; } #endif // 创建/chosen节点 if (fdt_chosen(blob) < 0) { printf("ERROR: /chosen node create failedn"); goto err; } /* Update ethernet nodes */ fdt_fixup_ethernet(blob); if (IMAGE_OF_BOARD_SETUP) { fdt_ret = ft_board_setup(blob, gd- >bd); if (fdt_ret) { printf("ERROR: board-specific fdt fixup failed: %sn", fdt_strerror(fdt_ret)); goto err; } } if (IMAGE_OF_SYSTEM_SETUP) { fdt_ret = ft_system_setup(blob, gd->bd); if (fdt_ret) { printf("ERROR: system-specific fdt fixup failed: %sn", fdt_strerror(fdt_ret)); goto err; } } /* Delete the old LMB reservation */ if (lmb) lmb_free(lmb, (phys_addr_t)(u32)(uintptr_t)blob, (phys_size_t)fdt_totalsize(blob)); ret = fdt_shrink_to_minimum(blob, 0); if (ret < 0) goto err; of_size = ret; if (*initrd_start && *initrd_end) { of_size += FDT_RAMDISK_OVERHEAD; fdt_set_totalsize(blob, of_size); } /* Create a new LMB reservation */ if (lmb) lmb_reserve(lmb, (ulong)blob, of_size); fdt_initrd(blob, *initrd_start, *initrd_end); if (!ft_verify_fdt(blob)) goto err; #if defined(CONFIG_SOC_KEYSTONE) if (IMAGE_OF_BOARD_SETUP) ft_board_setup_ex(blob, gd- >bd); #endif return 0; err: printf(" - must RESET the board to recover.nn"); return ret; } 这里我们只需要关注fdt_chosen函数,定义在common/fdt_support.c;其中rk3399和rk3588 SDK的u-boot源码是不一样的; 以rk3588为例: int fdt_chosen(void *fdt) { int nodeoffset; int err; char *str; /* used to set string properties */ // 检查设备树头部是否有效 err = fdt_check_header(fdt); if (err < 0) { printf("fdt_chosen: %sn", fdt_strerror(err)); return err; } /* find or create "/chosen" node. 查找或创建/chosen节点 */ nodeoffset = fdt_find_or_add_subnode(fdt, 0, "chosen"); if (nodeoffset < 0) return nodeoffset; // 获取环境变量bootargs的值 str = board_fdt_chosen_bootargs(fdt); if (str) { // 设置设备树中的bootargs属性 err = fdt_setprop(fdt, nodeoffset, "bootargs", str, strlen(str) + 1); if (err < 0) { printf("WARNING: could not set bootargs %s.n", fdt_strerror(err)); return err; } } return fdt_fixup_stdout(fdt, nodeoffset); } 其中board_fdt_chosen_bootargs定义在arch/arm/mach-rockchip/board.c: char *board_fdt_chosen_bootargs(void *fdt) { /* bootargs_ext is used when dtbo is applied. */ const char *arr_bootargs[] = { "bootargs", "bootargs_ext" }; const char *bootargs; int nodeoffset; int i, dump; char *msg = "kernel"; /* debug */ hotkey_run(HK_INITCALL); dump = is_hotkey(HK_CMDLINE); if (dump) printf("## bootargs(u-boot): %snn", env_get("bootargs")); /* find or create "/chosen" node. */ nodeoffset = fdt_find_or_add_subnode(fdt, 0, "chosen"); if (nodeoffset < 0) return NULL; // 遍历arr_bootargs,检查设备树中是否已有相关的bootargs for (i = 0; i < ARRAY_SIZE(arr_bootargs); i++) { // 获取/chosen节点的bootargs、bootargs_ext属性值 bootargs = fdt_getprop(fdt, nodeoffset, arr_bootargs, NULL); if (!bootargs) continue; if (dump) printf("## bootargs(%s-%s): %snn", msg, arr_bootargs, bootargs); /* * Append kernel bootargs * If use AB system, delete default "root=" which route * to rootfs. Then the ab bootctl will choose the * high priority system to boot and add its UUID * to cmdline. The format is "roo=PARTUUID=xxxx...". */ #ifdef CONFIG_ANDROID_AB env_update_filter("bootargs", bootargs, "root="); #else // 进入,更新bootargs环境变量,追加设备树中配置的bootargs env_update("bootargs", bootargs); #endif } #ifdef CONFIG_VENDOR_FRIENDLYELEC // 针对FriendlyELEC板卡的处理,进入 char *panel = board_get_panel_name(); // 如果设置了panel,更新bootargs环境变量,比如追加lcd=HD702E,213dpi if (panel) { char lcdinfo[128] = { 0 }; strcpy(lcdinfo, "lcd="); strncat(lcdinfo, panel, sizeof(lcdinfo) - 5); env_update("bootargs", lcdinfo); } #endif #if defined(CONFIG_ENVF) || defined(CONFIG_ENV_PARTITION) ...... #endif #ifdef CONFIG_MTD_BLK ...... #endif #ifdef CONFIG_ANDROID_AB ab_update_root_partition(); #endif /* * Initrd fixup: remove unused "initrd=0x...,0x...", * this for compatible with legacy parameter.txt */ env_delete("bootargs", "initrd=", 0); /* * If uart is required to be disabled during * power on, it would be not initialized by * any pre-loader and U-Boot. * * If we don't remove earlycon from commandline, * kernel hangs while using earlycon to putc/getc * which may dead loop for waiting uart status. * (It seems the root cause is baundrate is not * initilalized) * * So let's remove earlycon from commandline. */ if (gd- >flags & GD_FLG_DISABLE_CONSOLE) env_delete("bootargs", "earlycon=", 0); /* Android header v4+ need this handle */ #ifdef CONFIG_ANDROID_BOOT_IMAGE struct andr_img_hdr *hdr; hdr = (void *)env_get_ulong("android_addr_r", 16, 0); if (hdr && !android_image_check_header(hdr) && hdr->header_version >= 4) { if (env_update_extract_subset("bootargs", "andr_bootargs", "androidboot.")) printf("extract androidboot.xxx errorn"); if (dump) printf("## bootargs(android): %snn", env_get("andr_bootargs")); } #endif bootargs = env_get("bootargs"); if (dump) printf("## bootargs(merged): %snn", bootargs); return (char *)bootargs; } 以rk3399为例: int fdt_chosen(void *fdt) { /* * "bootargs_ext" is used when dtbo is applied. */ const char *arr_bootargs[] = { "bootargs", "bootargs_ext" }; int nodeoffset; int err; int i; char *str; /* used to set string properties */ int dump; // 判断HK_CMDLINE是否是热键,返回false dump = is_hotkey(HK_CMDLINE); // 检查设备树头部是否有效 err = fdt_check_header(fdt); if (err < 0) { printf("fdt_chosen: %sn", fdt_strerror(err)); return err; } /* find or create "/chosen" node. 查找或创建/chosen节点 */ nodeoffset = fdt_find_or_add_subnode(fdt, 0, "chosen"); if (nodeoffset < 0) return nodeoffset; // 获取环境变量bootargs的值 str = env_get("bootargs"); if (str) { // 如果环境变量配置了bootargs #ifdef CONFIG_ARCH_ROCKCHIP // 针对Rockchip架构的处理 const char *bootargs; if (dump) printf("## U-Boot bootargs: %sn", str); // 遍历arr_bootargs,检查设备树中是否已有相关的bootargs for (i = 0; i < ARRAY_SIZE(arr_bootargs); i++) { // 获取/chosen节点的bootargs、bootargs_ext属性值 bootargs = fdt_getprop(fdt, nodeoffset, arr_bootargs, NULL); // 1. fdt_chosen 389:earlycon=uart8250,mmio32,0xff1a0000 swiotlb=1 coherent_pool=1m // 2. fdt_chosen 389:root=/dev/mmcblk2p8 rw rootfstype=ext4 rootflags=discard data=/dev/mmcblk2p9 console=ttyFIQ0 consoleblank=0 cgroup_enable=cpuset cgroup_memory=1 cgroup_enable=memory swapaccount=1 printf("%s %d:%sn", __func__, __LINE__, bootargs); // 如果存在,更新环境变量bootargs if (bootargs) { if (dump) printf("## Kernel %s: %sn", arr_bootargs, bootargs); /* * Append kernel bootargs * If use AB system, delete default "root=" which route * to rootfs. Then the ab bootctl will choose the * high priority system to boot and add its UUID * to cmdline. The format is "roo=PARTUUID=xxxx...". */ hotkey_run(HK_INITCALL); #ifdef CONFIG_ANDROID_AB // 未定义 env_update_filter("bootargs", bootargs, "root="); #else // 进入,更新bootargs环境变量,追加设备树中配置的bootargs env_update("bootargs", bootargs); #endif #ifdef CONFIG_MTD_BLK // 未定义 char *mtd_par_info = mtd_part_parse(); if (mtd_par_info) { if (memcmp(env_get("devtype"), "mtd", 3) == 0) env_update("bootargs", mtd_par_info); } #endif /* * Initrd fixup: remove unused "initrd=0x...,0x...", * this for compatible with legacy parameter.txt */ env_delete("bootargs", "initrd=", 0); /* * If uart is required to be disabled during * power on, it would be not initialized by * any pre-loader and U-Boot. * * If we don't remove earlycon from commandline, * kernel hangs while using earlycon to putc/getc * which may dead loop for waiting uart status. * (It seems the root cause is baundrate is not * initilalized) * * So let's remove earlycon from commandline. */ if (gd- >flags & GD_FLG_DISABLE_CONSOLE) env_delete("bootargs", "earlycon=", 0); } } #endif #ifdef CONFIG_VENDOR_FRIENDLYELEC // 针对FriendlyELEC板卡的处理,进入 char *panel = board_get_panel_name(); // 如果设置了panel,更新bootargs环境变量,比如追加lcd=HD702E,213dpi if (panel) { char lcdinfo[128] = { 0 }; strcpy(lcdinfo, "lcd="); strncat(lcdinfo, panel, sizeof(lcdinfo) - 5); env_update("bootargs", lcdinfo); } #endif // 获取更新后的bootargs环境变量,并设置设备树中的bootargs属性 str = env_get("bootargs"); // fdt_chosen 451:storagemedia=emmc androidboot.storagemedia=emmc androidboot.mode=normal androidboot.dtbo_idx=0 earlycon=uart8250,mmio32,0xff1a0000 swiotlb=1 coherent_pool=1m rw root=/dev/mmcblk2p8 rootfstype=ext4 rootflags=discard data=/dev/mmcblk2p9 console=ttyFIQ0 consoleblank=0 cgroup_enable=cpuset cgroup_memory=1 cgroup_enable=memory swapaccount=1 lcd=HD702E,213dpi printf("%s %d:%sn", __func__, __LINE__, str); err = fdt_setprop(fdt, nodeoffset, "bootargs", str, strlen(str) + 1); if (err < 0) { printf("WARNING: could not set bootargs %s.n", fdt_strerror(err)); return err; } } if (dump) printf("## Merged bootargs: %sn", env_get("bootargs")); return fdt_fixup_stdout(fdt, nodeoffset); } 通过分析,可以了解到fdt_chosen 函数主要完成了以下任务: 确保设备树的 /chosen 节点存在; 从环境变量中获取和处理启动参数 bootargs; 根据不同的硬件配置(如Rockchip架构或FriendlyELEC板卡)调整启动参数; 更新设备树中的 bootargs 属性,确保内核可以正确获得启动参数; 修正标准输出设备配置。 在上面代码执行过程中我们输出了/chosen节点的bootargs、bootargs_ext属性值,其中bootargs_ext属性值哪里来的呢? root=/dev/mmcblk2p8 rw rootfstype=ext4 rootflags=discard data=/dev/mmcblk2p9 console=ttyFIQ0 consoleblank=0 cgroup_enable=cpuset cgroup_memory=1 cgroup_enable=memory swapaccount=1 这个值实际上配置在dtbo.img镜像中,具体可以参考android_fdt_overlay_apply函数,这个我们在接下来的内容会介绍到。 1.4 uboot编译和烧录 1.4.1 编译 如果我们对uboot源码有改动,执行如下命令进行编译; root@ubuntu:/work/sambashare/rk3588/friendly/sd-fuse_rk3588# UBOOT_SRC=$PWD/uboot-rockchip ./build-uboot.sh debian-bullseye-desktop-arm64 编译完成后debian-bullseye-desktop-arm64目录下的uboot.img被更新了。 1.4.2 dd 烧录 由于uboot.img占用的分区是uboot分区,假设SD/TF Card设备节点为/dev/mmcblk0。 我们在ubuntu开启http下载服务,或者使用scp将镜像文件发送到开发版; root@ubuntu:/work/sambashare/rk3588/friendly/sd-fuse_rk3588/debian-bullseye-desktop-arm64$ python3 -m http.server 8080 开发板下载uboot.img,然后使用如下命令烧录; root@linaro-alip:/opt# sudo wget 192.168.0.200:8080/uboot.img root@linaro-alip:/opt# sudo dd if=uboot.img of=/dev/mmcblk0p1 bs=1M 同样如果我们修改了resource.img,也可以使用如下命令烧录; root@linaro-alip:/opt# sudo wget 192.168.0.200:8080/resource.img root@linaro-alip:/opt# sudo dd if=resource.img of=/dev/mmcblk0p4 bs=1M 主要硬件指标 | | ROCKCHIP RK3588 八核 A76+A55 | | | | | | | | EMMC 5.1 标配 8GB 选配 32G/64G/128G | | | | | | | | | | |
|