结型器件:基于PN结、肖特基结或其延伸结构的两端器件,主要基于光生伏特效应实现光电信号转换,这类器件结构简单,光响应度强,是最为常见的光电探测器构型。
单沟道2D-FET:该器件为三端器件,因此可以获得材料基本的输运特性,场调控特性。相比于两端器件,其栅控端也带来了更大的调控自由度。FET结构是比较普适的器件结构
异质结二维场效应晶体管(2D-FET):本结构与单层沟道场效应晶体管(FET)的关键区别在于其功能层由两种或以上的二维材料构成的结型结构。通过栅极电压,可以同时调节结区的势垒高度和沟道中的载流子浓度。
多栅设计:鉴于二维材料所具有的超薄沟道和卓越的场效应控制能力,可以设计出多种栅极结构以进一步优化器件性能。比如,上下双栅结构,局域栅结构、分立栅结构。
浮栅设计:浮栅结构最初被应用于NAND存储器中,以实现非易失性存储。基于浮栅结构和二维材料可以实现的应用包括:①光存储:②神经形态计算:③光逻辑:
垂直沟道设计:作为一种独特的器件设计,垂直沟道结构充分利用了二维材料的特性。通过巧妙地利用二维材料在厚度方向上的传输能力,该设计能够实现量子维度的弹道输运现象。
Barristor型器件:也被称为可变势垒晶体管,通过栅极电压控制肖特基势垒,实现对电流的开关控制,其本质上是借助了二维材料的量子电容特性。
复合功能型器件:二维材料的“积木组装”特性,可以将不同的二维材料器件组合堆叠还能将不同的器件乃至功能模块组合堆叠。
参考文献:
1. Yang, Y., et al., Plasmonic Transition Metal Carbide Electrodes for High-Performance InSe Photodetectors. ACS Nano, 2019. 13(8): p. 8804-8810.2. Krishnamurthi, V., et al., Liquid-Metal Synthesized Ultrathin SnS Layers for High-Performance Broadband Photodetectors. Adv Mater, 2020. 32(45): p. e2004247.3. Wang, X., et al., Ultrasensitive and Broadband MoS2 Photodetector Driven by Ferroelectrics. Adv. Mater., 2015. 27(42): p. 6575-+.4. Xue, H., et al., A MoSe2/WSe2 Heterojunction-Based Photodetector at Telecommunication Wavelengths. Advanced Functional Materials, 2018. 28(47).5. Zong, X., et al., Black phosphorus-based van der Waals heterostructures for mid-infrared light-emission applications. Light Sci Appl, 2020. 9: p. 114.6. Lu, Q., et al., Low-Noise Mid-Infrared Photodetection in BP/h-BN/Graphene van der Waals Heterojunctions. Materials (Basel), 2019. 12(16).7. Yang, S., et al., Monolithic Interface Contact Engineering to Boost Optoelectronic Performances of 2D Semiconductor Photovoltaic Heterojunctions. Nano Lett., 2020. 20(4): p. 2443-2451.8. Yu, W.J., et al., Highly efficient gate-tunable photocurrent generation in vertical heterostructures of layered materials. Nat Nanotechnol, 2013. 8(12): p. 952-8.9. Lopez-Sanchez, O., et al., Ultrasensitive photodetectors based on monolayer MoS 2. Nat. Nanotechnol., 2013. 8(7): p. 497-501.10. Yang, H., et al., Graphene Barristor, a Triode Device with a Gate-Controlled Schottky Barrier. Science, 2012. 336(6085): p. 1140-1143.11. Huh, W., et al., Synaptic Barristor Based on Phase-Engineered 2D Heterostructures. Advanced Materials, 2018. 30(35): p. 1801447.12. Mennel, L., et al., Ultrafast machine vision with 2D material neural network image sensors. Nature, 2020. 579(7797): p. 62-66.13. Pan, C., et al., Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nature Electronics, 2020. 3(7): p. 383-390.14. Yan, J., et al., Dual-gated bilayer graphene hot-electron bolometer. Nat Nanotechnol, 2012. 7(7): p. 472-8.15. Choi, D.-H., et al., Engineering performance of barristors by varying the thickness of WS2. Current Applied Physics, 2017. 17(1): p. 11-14.16. Paul, T., et al., A high-performance MoS2 synaptic device with floating gate engineering for neuromorphic computing. 2D Materials, 2019. 6(4).17. Gong, F., et al., High‐Sensitivity Floating‐Gate Phototransistors Based on WS2 and MoS2. Advanced Functional Materials, 2016. 26(33): p. 6084-6090.18. Nazir, G., et al. Gate Tunable Transport in Graphene/MoS2/(Cr/Au) Vertical Field-Effect Transistors. Nanomaterials, 2018. 8, DOI: 10.3390/nano8010014.19. Vaziri, S., et al., A Graphene-Based Hot Electron Transistor. Nano Letters, 2013. 13(4): p. 1435-1439.20. Britnell, L., et al., Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science, 2012. 335(6071): p. 947-950.21. Kim, C.O., et al., High photoresponsivity in an all-graphene p-n vertical junction photodetector. Nat Commun, 2014. 5: p. 3249.22. Massicotte, M., et al., Photo-thermionic effect in vertical graphene heterostructures. Nat. Commun., 2016. 7: p. 12174.23. Liao, F., et al., A Dual-Gate MoS2 Photodetector Based on Interface Coupling Effect. Small, 2020. 16(1): p. 1904369.24. Zhou, J., et al., Charge Sampling Photodetector Based on van der Waals Heterostructures. Advanced Optical Materials, 2022. 10(24): p. 2201442.25. Liu, W., et al., Graphene charge-injection photodetectors. Nature Electronics, 2022. 5(5): p. 281-288.26. Yu, J., et al., Bioinspired mechano-photonic artificial synapse based on graphene/MoS(2) heterostructure. Sci Adv, 2021. 7(12).27. Seo, S., et al., Artificial optic-neural synapse for colored and color-mixed pattern recognition. Nature Communications, 2018. 9(1): p. 5106.28. Zhu, Y., et al., Non-volatile 2D MoS(2)/black phosphorus heterojunction photodiodes in the near- to mid-infrared region. Nat Commun, 2024. 15(1): p. 6015.29. Ning, H., et al., An in-memory computing architecture based on a duplex two-dimensional material structure for in situ machine learning. Nature Nanotechnology, 2023. 18(5): p. 493-500.30. Shen, T., et al., Electric Field Screening in Gate‐Tunable van der Waals 2D‐Metal/InSe Junctions. Advanced Functional Materials, 2022. 32(47).31. Tong, L., et al., 2D materials–based homogeneous transistor-memory architecture for neuromorphic hardware. Science, 2021. 373(6561): p. 1353-1358.32. Wan, X., et al., A self-powered high-performance graphene/silicon ultraviolet photodetector with ultra-shallow junction: breaking the limit of silicon? npj 2D Mater. and Appl., 2017. 1(1): p. 4.33. Yu, T., et al., Graphene Coupled with Silicon Quantum Dots for High-Performance Bulk-Silicon-Based Schottky-Junction Photodetectors. Advanced Materials, 2016. 28(24): p. 4912-4919.34. Son, B., et al., Efficient Avalanche Photodiodes with a WSe2/MoS2 Heterostructure via Two-Photon Absorption. Nano Letters, 2022. 22(23): p. 9516-9522.
								
								
								
1225